AfterMarketNews AfterMarketNews Auto Care Pro AutoCareCareerHub Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

BMW Recognized for Engine-Building Excellence

BMW Group’s engine-building prowess was recognized with four wins at the latest International Engine of the Year Awards. The drive unit in the BMW i8 earned two class wins as well as being declared overall winner, with a further class win being garnered...

Read more...

Diagnostic Dilemma: The Case of the Missing Code

When doing mobile diagnostic work, no-code stalling complaints are a major part of your agenda. In most cases, the client shop is simply too busy to duplicate the failure or, in some cases, a long test drive will yield nothing in the way of useful...

Read more...

Secondary Ignition: The Art of Spark

What is a coil? From the beginning of the internal combustion engine, several different ignition systems have been used to create a high-energy spark. The most popular system, and the one that’s in use today, is a step-up coil. A coil is nothing...

Read more...

Regulators Launch Investigation Into Jeep Grand Cherokee Brake Defect

Federal regulators are investigating whether the automatic braking systems in some 2014 Jeep Grand Cherokees may be defective after receiving a number of complaints from motorists about a potentially dangerous glitch that caused their vehicles to come...

Read more...

Electronic Proportioning Valve: Doing More With Less Hardware

Anti-lock brake systems (ABS) and the HCU are replacing proportioning, combination and other valves to change the braking forces in the front and rear. This is called Electronic Brake Distribution (EBD) and it can dynamically change the proportioning...

Read more...

NHTSA’s GM Brake Line Corrosion Investigation: Reading Between the Brake Lines

There will be no recalls on some GM vehicles for brake line corrosion. Instead, we received an advisory from the National Highway and Traffic Safety Administration (NHTSA) about brake line inspection and car washes. What was not discussed was the corrosion...

Read more...

Customer Loyalty to Vehicle Brands Spells Ongoing Maintenance Opportunities

Vehicle owners’ allegiance to brands should give us all something to cheer about. This is especially true for those of you who service import vehicles. Nine import nameplates — Infiniti, Land Rover, Lexus, Mazda, Mitsubishi, Nissan, Porsche, Subaru...

Read more...

The Element of Trust And Its Impact on a Repair Scenario

Trust: It’s an important word, and it’s one I hear a lot behind the counter at the shop. “I know you’ll treat me right because I trust what you do,” is the general sentiment. But I’ve always wondered how deep that level of comfort goes...

Read more...

Servicing Mercedes-Benz AIRMATIC Suspensions

The Mercedes-Benz AIRMATIC suspension system was introduced in 1999 on the S-Class and has subsequently been used on the E-Class and most of the automaker’s SUVs. The system employs electronically controlled air springs that provide an ideal balance...

Read more...

Ingersoll Rand's 'Real Work Real Play' Sweepstakes With Gas Monkey Garage And NASCAR Rewards A Tool User With The Ultimate Fan Weekend

Ingersoll Rand, the Official Power Tools of NASCAR and a preferred tool provider for Gas Monkey Garage, has announced the “Real Work Real Play” sweepstakes to reward automotive fans who “get it done” with a weekend of fun. Ingersoll Rand is working...

Read more...

Bosch Relaunches Boschdiagnostics.com With Mobile-Responsive Design, New Layout For North America

Bosch has announced the re-launch of boschdiagnostics.com in North America, continuing to update all of its sites to a mobile-responsive, intuitive design. The URL contains three separate sites, featuring DIY diagnostic tools (DIY), professional diagnostic...

Read more...

New Bartec Tech400Pro TPMS Tool To Be Demonstrated At NACE | CARS

Bartec USA, a North American leader in TPMS Diagnostic tools, will hold live demonstrations of its newly released Tech400Pro TPMS Scan Tool at this year’s NACE | CARS show in Detroit. Michael Rose, Bartec product manager, will conduct these demonstrations...

Read more...
Home ASE Test Prep Air Ride: Compressor Diagnostics

Print Print Email Email

On most modern vehicles, the compressor and air ride control unit are very intelligent components. Most communicate with the Body Control Module (BCM) on a high-speed serial data bus. These systems have malfunction indicator lights on the dash and require the use of a scan tool to diagnose the system. 
 
Servicing modern air ride systems requires the right service information to interpret the “C” or chassis codes the air ride system can generate. A failure code and an illuminated dash light could be just a failure of the air ride module to communicate with the BCM. This could be due to electrical problems and not a leak in the air system or a compressor failure. 
 

With an enhanced or factory scan tool, it is possible to perform bi-direction tests on the compressor and valves during inspection. This can save you hours of diagnostic time waiting for a compressor to turn on and drain the battery or testing for an intermittent condition. Throwing parts at these vehicles without performing a proper diagnosis can result in an unhappy customer and lost productivity.  
 
The air ride module does more than control the ride height. The software controls the temperature of the compressor so it does not damage itself trying to inflate a leaking air bag. It can also change the characteristics of the air bag in response to how fast the vehicle is going and if it is in sport or towing mode. But most of all, it helps to filter out erroneous ride height readings so the best possible ride is achieved.  
  
Compressor Killers
Most passenger and light-truck compressors are diaphragm types that supply an oil-free air supply to the springs. A piston-type compressor can be found on applications that require a higher volume of air. 
 
Running the compressor for extended periods can over heat the compressor and damage the diaphragm or piston. It is very important to ensure that the source of air for the compressor is clean and as dry as possible.
 
In the air is moisture that can damage not only the compressor, but the valves. When air is compressed, the water vapor contained in the air is condensed into a liquid. If there is no means of removing the water from the system, it will find its way to all parts of the system causing corrosion damage or freezing.
 
Most systems have a dryer that is connected to the compressor outlet to absorb the water entering the system. The dryer contains a moisture-absorbing desiccant such as silica gel. The desiccant can hold a given amount of water and once the desiccant is saturated with water, it will allow water to pass into the system.
 
The dryers that are installed on most systems do not have an indicator that will show when it is saturated and no longer able to absorb water. An additional dryer with a moisture indicator can be added to the original equipment dryer. It can be installed in the supply line and placed in a position where a periodic check can be made.
 
Some systems have filters on the air intake for the pump. The filter removes airborne particles and acts as a noise muffler for the compressor. Some systems even send purged air back through the filter. This filter should be replaced with the compressor, and often this filter is attached to the compressor’s casing. 
 
Another killer of air-ride components is the compressor. As the compressor over heats and wears, it can send debris and oil to the rest of the system. This oil and debris can degrade the air bellows even after the compressor is replaced. This is why it is critical to flush the lines if a compressor has failed.  
 
Some systems have air reserve tanks or accumulators located in the most inconvenient locations, like below the C-pillar or next to the frame rail. If the system experiences a catastrophic failure of the compressor or air bladder, replacement or flushing of the reserve might be required.    
The health of the entire system depends on the quality of the air supply. It is rare for just one component of an air suspension to fail.  
Mechanical and Solenoid Valves
There are various combinations of both mechanical and solenoid valves.

The function of the mechanical or solenoid valve is to exhaust air from the spring(s). Each spring can have a valve. For the Lincoln air suspension system, there are five solenoid valves — one for each air spring or strut and one to exhaust air from the system. 
 
Most valves are used for a pair of load-assist springs. The compressor unit contains a one-way check valve to isolate it from the springs or a reservoir. The Lincoln compressor has a combination one-way check valve and exhaust solenoid valve to inflate or exhaust the springs individually. Whether the valve is mechanical or solenoid, it needs dry air to operate properly.
 
Plastic line is used to transport air in the system in sizes 1/4”, 3/8” and 1/2”. Most fittings are push-on O-ring type ranging in size from 1/8” to 3/8” Male NPT.
 
Air struts for some import vehicles can have even more complex valves, air chambers and accumulators on the strut body to keep the suspension taut under certain conditions. These types of struts will have both an air and electrical connection to control the valves on the strut and the hydraulic valves of the dampener.  
Dynamic Vehicle Trim
The Lincoln Continental Mark VIII is equipped with ride height sensors at each front wheel and one for the live rear axle at the driver’s side control arm. The sensors provide input to the controller for ride height. The suspension controller is programmed for two different ride heights.
 
Parked, the vehicle will maintain this height by compensating for passengers and luggage. When the vehicle is put into gear, the controller will raise the suspension ride height 0.75 inch (20 mm). When vehicle speed exceeds 63 mph (105 kph), ride height is lowered by 0.75 inch (20 mm). When vehicle speed decreases to 45 mph (72 kph), the vehicle ride height is increased. The differential between 45 and 63 mph provides a dead band where the system will not adjust ride height. This prevents the system from cycling with small changes in vehicle speed. With the ignition off and doors closed, the vehicle returns to parked height.
 
The rear air struts on GM vehicles are used to assist the conventional coil springs. Cadillac vehicles with Road Sensing Suspension (RSS) have an electrically operated hydraulic valve located at the base of the air shock. There are sensors located at each wheel that supply input to the ride controller that operates the valves in the air shock and front struts. The suspension height sensor is located on the driver-side control arm and the compressor is located in the rear suspension cradle.
Alternatives
There are suppliers that can provide economical replacements for both springs and struts. These alternatives replace the air ride components with springs and conventional ride control units. On some vehicles that still have 100,000 of miles of useable service left, these kits can offer an economical option for the driver. Also, some remanufacturers are willing to pay for the worn air ride shock or strut cores that come off the vehicle. In some cases, the core could be worth $300! 
The following two tabs change content below.

Andrew Markel

Andrew Markel is the editor of Brake & Front End, Underhood Service and Servicio Automotriz magazines. He has been with Babcox Media for more than 15 years. He is a technician and former service writer and holds several automotive certifications from ASE and ­aftermarket manufacturers. He can be reached at [email protected]
Latest articles from our other sites:

Top 10 Fuel Pump Fails

10. Strainer Blocks Fuel-Level Sender A fuel pump inlet strainer may be installed that is interfering with the travel of the fuel-level sensor’s float arm, which causes an optimistic fuel level...More

GMC Yukon No-Cranking Complaint: The 1,300-Mile Test Drive

This month’s Diagnostic Dilemma is about the technical and professional issues involved with attempting to diagnose an extremely random no-cranking complaint on a 2003 GMC Yukon equipped with the 5.3L...More

Chrysler Tech Tip: Stability Control System Engages Prematurely

Problem:  ESP system may prematurely activate momentarily when negotiating a curve or MIL illumination due to diagnostic trouble code P0340, P0344 or P0116. Overview: This bulletin involves selectively...More

Honda Tech Tip: Dampers Lock Up After Lowering Vehicle on a Rack

You’ve got your service customer’s vehicle up on a rack to do some work. You lower it back down, but now it looks like a 4x4 ready for some serious off-roading or it feels like it’s got a rock-solid...More

Customer Loyalty to Vehicle Brands Spells Ongoing Maintenance Opportunities

Vehicle owners’ allegiance to brands should give us all something to cheer about. This is especially true for those of you who service import vehicles. Nine import nameplates — Infiniti, Land Rover,...More

Top 10 Subaru Articles

We're counting down the top ten most effective Subaru technical articles ever! 10) Tech Tip: Subaru Impreza With DTCs P0705, P0851, P2746, P2750 And/Or No Crank, No Start If you receive a customer...More

Autel's MaxiSYS Elite Offers Faster Processor, New Docking Station

The MaxiSYS Elite is the latest addition to Autel’s MaxiSYS family of diagnostic tools. The new Elite features a faster processor, higher screen resolution, faster WiFi, longer battery life and Android’s...More

Save Time Installing TPMS Using Dill's Preset Torque Tools

Dill TPMS Torque Tools are designed to easily install the hex nut on the valve stem. The torque values are preset, eliminating the need to adjust a torque wrench before and after install. Dill’s...More