AfterMarketNews AfterMarketNews Auto Care Pro AutoCareCareerHub Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

Harmonic Dampeners: Why They Fail, What to Look For

Every time a cylinder fires, the crankshaft speeds up a very small amount for a short period of time. It is then slowed down as the next cylinder in the firing order compresses air and fuel for the next combustion event. The speeding up and slowing...

Read more...

Be Careful When Replacing That Diesel Air Filter

Modern passenger and light-duty diesels with ECMs have mass airflow sensors and precisely control fuel ­delivery. Key to the efficiency and lifespan of the diesel engine is the diesel air filter. A restricted air filter will not affect fuel economy but...

Read more...

Replacing a Faulty Ignition Coil

After a faulty ignition coil is diagnosed and replacement is determined, best practices are essential. Here is a list of tech tips when performing ignition coil replacements. • Coils shouldn’t have any visible damage and the boot should be...

Read more...

False ABS Activation After Wheel Bearing Hub Replacement

Vehicles: All ABS-equipped vehicles Condition: Vehicle had wheel bearing hub replaced on one side. Repair Procedure: If you diagnose a bad hub bearing on one side of a vehicle and the ABS wheel speed sensor or tone ring is integral to the bearing,...

Read more...

Are you afraid of selling alignments?

I am starting to notice a trend when it comes to alignments. It’s not the vehicles that are changing, but rather the attitudes toward alignment services — and it happens at independent repair shops, franchise shops and even dealers. The alignment...

Read more...

Choosing the Right Brake Pad for the Right Customer

There is one simple piece of advice I try to live by: “Know what you know, and know what you don’t know.” This simple credo can save you from making mistakes and looking like a complete idiot. I am often asked for my opinion of a certain...

Read more...

Import Automatic Transmission Diagnostics

Don’t be alarmed if you pull an automatic transmission trouble code when diagnosing a “check engine” warning light! Since the automatic transmission operation has a major effect on grams-per-mile exhaust emissions, you’re going to see the...

Read more...

Honda: Vehicle Won’t Move or Barely Moves

A customer brings in a vehicle that won’t move forward, ­­backward or both. Check first to see if it grinds or clicks. And does the speedometer read a lot higher than you’re actually going? Chances are the driveshaft is disengaged. This can...

Read more...

When Timing Is Everything: A Look At The 2.5L, 2.0L Powerplants

Last month, we looked at the timing chain setup on the Audi 3.2L engine and saw how a lack of oil changes can adversely affect the tensioners and cause engine failure. We’ve also seen similar issues with the timing chain setups on the 2.5L 5-cylinder...

Read more...

Diagnosing Starter Misses

Contributing writer Gary Goms was called to a friend’s shop to help with a no-cranking condition on a 2006 Chevy Tahoe. After diagnosing a faulty PCM ground, locating the missing ground proved to be problematic. Find out how Gary solves The Case...

Read more...

Snap-on Adds Diagnostic Calculator To Website

Snap-on announces a new diagnostic calculator feature has been added to its website at http://diagnostics.snapon.com to help automotive repair technicians and shop owners determine how much profit they could be making by using a Snap-on diagnostic platform,...

Read more...

ATEQ TPMS Tools Launches New Website

  ATEQ TPMS Tools, LC, which supplies and manufactures TPMS (tire pressure monitoring system) tools, announced the launch of its newly revamped www.ateqtpm.com. This newly redesigned website offers quick and easy access to essential information...

Read more...
Home ASE Test Prep Diagnostic Dilemmas: Solving Starter And Alternator Problems

Print Print Email Email
car starter basics
On June 15, 1911, Charles F. Kettering was awarded a patent for an electric self-starter for ­automobile engines. Thinking out of the box, Kettering ­designed a small, high-torque motor that would deliver a burst of energy lasting only long enough to initiate the internal combustion cycle. Fortunately for modern commuters, Kettering’s electric self-starter transformed the automobile from a temperamental novelty item into a practical means of transportation.
Car starter problems

Photo 1

Starter/alternator basics

From a historical view, it’s important to remember that Kettering’s conventional field-coil starter required battery power to create the magnetic field needed to make the starter armature turn. During the 1980s, field-coil starters were phased out in favor of “ferrite” permanent-magnet starters.
Since the fields in permanent magnet starters don’t require battery power, permanent-magnet starters require much less current to crank an engine. The result is a much lighter, far more efficient starter motor. But, because permanent or ferrite magnets are made of a brittle ceramic material, they are vulnerable to cracking caused by sudden impacts.

 

Cracked magnets can be tough to diagnose, which is why it’s usually better to replace the starter as an assembly than to repair or rebuild it. See Photo 1.
car starter problems

Photo 2

In addition, the rotating mass of the starter ­armature is reduced to create a more compact starter motor assembly. As pictured in Photo 2, the ­armature on most modern starters terminates into a sun gear mating with a set of planetary gears (see Photo 3) provide the initial gear reduction for the starter.

A secondary reduction gear can also be used on starters like the one used to illustrate this story. See Photo 4.

 

The starter “solenoid” is actually a combination of an electric relay and solenoid. The relay portion electrically connects the starter armature to the battery. The solenoid portion mechanically engages the starter’s drive pinion with the ­engine’s flywheel gear. While modern solenoids usually incorporate two high-amperage terminals and one low-amperage, primary activation terminal, some older designs might incorporate an ­additional primary “bypass” terminal that was originally designed to boost ignition coil voltage during cranking. In some applications, the bypass terminal is unused and remains a vestigial remnant of past technology.
car alternator problems

Photo 3

The starter over-run or one-way clutch is a simple roller-type clutch that’s designed to release when the engine speed exceeds cranking speed. In rare instances, the clutch will seize, which can cause the starter armature to explode from centrifugal force as the engine accelerates. In other cases, the clutch will simply wear out, which usually results in a “whirring” sound, indicating that the starter motor is running, but not engaged to the flywheel. Some alternator problems are misdiagnosed when really a failure of the alternator pulley is the issue.

Starter Actuation Systems

For safety’s sake, the starter’s primary circuit is routed through a neutral safety switch on automatic transmission vehicles and through a clutch safety switch on manual transmission models. With that said, current practice is to reduce the electrical load on the ignition, neutral safety and clutch switches by inserting a starter relay into the starter primary ­circuit. In this case, the above switches activate the starter relay switch rather than the starter’s primary solenoid circuit.
alternator problems

Photo 4

Keep in mind also that modern technology in some vehicles has delegated the starter engagement process to the powertrain control module (PCM). In this system, turning the ignition switch or pressing the “start” button simply commands the PCM to engage the starter motor. Failures and alternator problems in these systems should first be diagnosed with a scan tool and by using diagnostic techniques similar to those used in any other system controlled by the PCM.


charging system diagnostics

Photo 5

Battery Diagnostics

The first step is to make sure that the battery ­terminals and cables are free of corrosion. Next, ­determine the battery state of charge (SOC) and ­condition by testing with a conductance or variable-load, carbon pile battery tester. Recharge or replace the battery as required. Voltage drop from the battery to the starter can be measured by attaching a voltmeter in parallel to the positive battery terminal and to the solenoid B+ terminal.

 

The rule of thumb is that voltage drop shouldn’t exceed 0.5 volts during cranking. The voltage drop on the negative ground terminal can similarly be measured by attaching the voltmeter lead to a clean area on the engine block and to the battery B- terminal. Here again, the voltage drop shouldn’t exceed 0.5 volts. See Photo 5.

Starter Current Diagnostics

Most starter or alternator-related electrical failures can be diagnosed by measuring current flow into the starter. ­Actual current flow to the starter can be measured by attaching a 600-amp inductive current probe to the battery positive or negative cables. The probe can be attached to a multimeter with a minimum/ maximum (min/max) recording feature or to a two-channel lab scope.

 

vehicle chargining problems

Fig. 1

To illustrate how a starter works on a vehicle in good condition, I’ve included a lab scope recording of battery terminal voltage and starter amperage draw. See Figure 1.

The amperage draw begins from the “zero” point at the left. The initial amperage drawn by the solenoid primary circuit occurs at 70 milliseconds (ms).  If the voltage remains at zero, it’s likely that the system has a bad neutral or clutch safety switch, or that the starter relay is defective. If the solenoid amperage remains at 2-3 amps, the solenoid doesn’t have continuity to the starter. Bad solenoid contacts, worn starter brushes or an open-circuit armature can be the cause. In this case, the primary symptom will be a clicking noise as the solenoid primary ­circuit activates. Any of the above failures can result in an intermittent starter engagement complaint.
Once the solenoid closes the circuit at 100 ms, the amperage draw increases to 311 amperes at the trigger point. As the ­engine cranks, the amperage draw declines until approximately 300 ms. At about 300 ms, ­amperage rises slightly as the torque load on the starter is momentarily ­increased due to a possible variation in fuel delivery or spark advance.
alternator diagnostics

Fig. 2

Similarly, battery terminal voltage spikes down to nearly 8.0 volts at 100 ms as cranking amperage is suddenly drawn from the battery. The battery terminal voltage begins to rise to about 10.0 volts at 200 ms as the starter amperage begins to stabilize. As the engine begins to crank, 10.0 volts should be considered the minimum voltage.

 

If the battery won’t maintain 10.0 volts during cranking, the PCM might fail to process data or activate the injector and ignition system drivers. See Figure 2.

Battery Voltage Graphing

Graphing available battery terminal voltage also provides a direct insight into battery condition. Charging voltage should be achieved approximately two seconds after the engine starts. If charging voltage doesn’t increase within that time interval, it’s likely that the battery doesn’t have enough remaining plate ­capacity to fully support starter current draw. In any case, using a lab scope to display available battery voltage and amperage discharge is an easy way to quickly evaluate battery, starter and starter activation systems.

A Look at Stop/Idle Technology

We’re beginning to see “idle/stop” or “stop/start” technology enter the non-hybrid market, with fuel savings ranging from an estimated 5% to 15% in normal driving. Although a version of idle/stop technology was popularly introduced in a European ­version of Volkswagen in 1983, the technology has a number of issues, including how to power the HVAC and lighting systems while the engine is stopped.
Because idle/stop technology obviously requires a rapid discharge/recharge cycle, the absorbed glass mat (AGM) battery most closely meets those requirements. Similarly, idle/stop engine cranking systems include integrated starter/generator systems mounted at the flywheel or connected to the front of the crankshaft by the drive belt.
Others use an ­“enhanced” starter motor system that is built to withstand repeated cranking cycles. With the ­advent of direct fuel injection and electronic valvetrains, some manufacturers have explored using fuel and spark timing alone to initiate the internal combustion process.
The following two tabs change content below.

Gary Goms

Gary Goms is a former educator and shop owner who remains active in the aftermarket service industry. Gary is an ASE-certified Master Automobile Technician (CMAT) and has earned the L1 advanced engine performance certification. He also belongs to the Automotive Service Association (ASA) and the Society of Automotive Engineers (SAE).
Latest articles from our other sites:

Harmonic Dampeners: Why They Fail, What to Look For

Every time a cylinder fires, the crankshaft speeds up a very small amount for a short period of time. It is then slowed down as the next cylinder in the firing order compresses air and fuel for the next...More

Be Careful When Replacing That Diesel Air Filter

Modern passenger and light-duty diesels with ECMs have mass airflow sensors and precisely control fuel ­delivery. Key to the efficiency and lifespan of the diesel engine is the diesel air filter. A restricted...More

False ABS Activation After Wheel Bearing Hub Replacement

Vehicles: All ABS-equipped vehicles Condition: Vehicle had wheel bearing hub replaced on one side. Repair Procedure: If you diagnose a bad hub bearing on one side of a vehicle and the ABS wheel speed...More

Are you afraid of selling alignments?

I am starting to notice a trend when it comes to alignments. It’s not the vehicles that are changing, but rather the attitudes toward alignment services — and it happens at independent repair shops,...More

Import Automatic Transmission Diagnostics

Don’t be alarmed if you pull an automatic transmission trouble code when diagnosing a “check engine” warning light! Since the automatic transmission operation has a major effect on grams-per-mile...More

Infiniti: Removal of a Seized Exhaust Sensor

If an exhaust sensor is seized in the exhaust manifold/catalyst/front tube, perform the service procedure to remove the sensor and prevent unnecessary replacement of the exhaust manifold/catalyst/front...More

Loosen Seized Fasteners with Lisle’s Small Fastener Remover

Use Lisle’s Small Fastener Remover (60530) with a pneumatic impact tool to loosen rusted or seized fasteners. A 3/4" open end wrench can be used to turn the socket while impacting the fastener. A...More

Campbell Hausfeld Air Ratchet Delivers 55 Ft.-Lbs. Max Torque

Campbell Hausfeld’s expanded CH Commercial air tools program includes the CL1501 3/8-in. Ratchet. Weighing 2.5 lbs. and ideal for automotive engine work, the CL1501 delivers 55 ft.-lbs. of maximum...More